EconPapers    
Economics at your fingertips  
 

ATC-YOLOv5: Fruit Appearance Quality Classification Algorithm Based on the Improved YOLOv5 Model for Passion Fruits

Changhong Liu (), Weiren Lin, Yifeng Feng, Ziqing Guo and Zewen Xie
Additional contact information
Changhong Liu: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
Weiren Lin: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
Yifeng Feng: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
Ziqing Guo: School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
Zewen Xie: School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China

Mathematics, 2023, vol. 11, issue 16, 1-20

Abstract: Passion fruit, renowned for its significant nutritional, medicinal, and economic value, is extensively cultivated in subtropical regions such as China, India, and Vietnam. In the production and processing industry, the quality grading of passion fruit plays a crucial role in the supply chain. However, the current process relies heavily on manual labor, resulting in inefficiency and high costs, which reflects the importance of expanding the application of fruit appearance quality classification mechanisms based on computer vision. Moreover, the existing passion fruit detection algorithms mainly focus on real-time detection and overlook the quality-classification aspect. This paper proposes the ATC-YOLOv5 model based on deep learning for passion fruit detection and quality classification. First, an improved Asymptotic Feature Pyramid Network (APFN) is utilized as the feature-extraction network, which is the network modified in this study by adding weighted feature concat pathways. This optimization enhances the feature flow between different levels and nodes, allowing for the adaptive and asymptotic fusion of richer feature information related to passion fruit quality. Secondly, the Transformer Cross Stage Partial (TRCSP) layer is constructed based on the introduction of the Multi-Head Self-Attention (MHSA) layer in the Cross Stage Partial (CSP) layer, enabling the network to achieve a better performance in modeling long-range dependencies. In addition, the Coordinate Attention (CA) mechanism is introduced to enhance the network’s learning capacity for both local and non-local information, as well as the fine-grained features of passion fruit. Moreover, to validate the performance of the proposed model, a self-made passion fruit dataset is constructed to classify passion fruit into four quality grades. The original YOLOv5 serves as the baseline model. According to the experimental results, the mean average precision (mAP) of ATC-YOLOv5 reaches 95.36%, and the mean detection time (mDT) is 3.2 ms, which improves the mAP by 4.83% and the detection speed by 11.1%, and the number of parameters is reduced by 10.54% compared to the baseline, maintaining the lightweight characteristics while improving the accuracy. These experimental results validate the high detection efficiency of the proposed model for fruit quality classification, contributing to the realization of intelligent agriculture and fruit industries.

Keywords: computer vision; deep learning; fruit quality classification; passion fruit; YOLOv5 (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/16/3615/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/16/3615/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:16:p:3615-:d:1221650

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3615-:d:1221650