Reinforcement Procedure for Randomized Machine Learning
Yuri S. Popkov (),
Yuri A. Dubnov and
Alexey Yu. Popkov
Additional contact information
Yuri S. Popkov: Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova, 119333 Moscow, Russia
Yuri A. Dubnov: Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova, 119333 Moscow, Russia
Alexey Yu. Popkov: Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44/2 Vavilova, 119333 Moscow, Russia
Mathematics, 2023, vol. 11, issue 17, 1-14
Abstract:
This paper is devoted to problem-oriented reinforcement methods for the numerical implementation of Randomized Machine Learning. We have developed a scheme of the reinforcement procedure based on the agent approach and Bellman’s optimality principle. This procedure ensures strictly monotonic properties of a sequence of local records in the iterative computational procedure of the learning process. The dependences of the dimensions of the neighborhood of the global minimum and the probability of its achievement on the parameters of the algorithm are determined. The convergence of the algorithm with the indicated probability to the neighborhood of the global minimum is proved.
Keywords: randomized machine learning; reinforcement learning; utility function; payoff function; Bellman’s optimality principle (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/17/3651/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/17/3651/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:17:p:3651-:d:1223667
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().