EconPapers    
Economics at your fingertips  
 

SSDStacked-BLS with Extended Depth and Width: Infrared Fault Diagnosis of Rolling Bearings under Dual Feature Selection

Jianmin Zhou (), Lulu Liu and Xiwen Shen
Additional contact information
Jianmin Zhou: Key Laboratory of Conveyance and Equipment, East China Jiaotong University, Ministry of Education, Nanchang 330013, China
Lulu Liu: Key Laboratory of Conveyance and Equipment, East China Jiaotong University, Ministry of Education, Nanchang 330013, China
Xiwen Shen: Key Laboratory of Conveyance and Equipment, East China Jiaotong University, Ministry of Education, Nanchang 330013, China

Mathematics, 2023, vol. 11, issue 17, 1-18

Abstract: In fault diagnosis, broad learning systems (BLS) have been applied in recent years. However, the best fault diagnosis cannot be guaranteed by width node extension alone, so a stacked broad learning system (stacked BLS) was proposed. Most of the methods for choosing the number of depth layers used optimization algorithms that tend to increase computation time. In addition, the data under single feature selection are not sufficiently representative, and effective features are easily lost. To solve these problems, this article proposes an infrared fault diagnosis model for rolling bearings based on integration of principal component analysis and singular value decomposition (IPS) and the stacked BLS with self-selected depth model (SSDStacked-BLS). First, 72 second-order statistical features are extracted from the pre-processed infrared images of rolling bearings. Next, feature selection is performed using IPS. he IPS feature selection module consists of principal component analysis (PCA) and singular value decomposition (SVD). The feature selection is performed by PCA and SVD separately, which are then stitched together to form a new feature. This ensures a comprehensive coverage of infrared image features. Finally, the acquired features are input into SSDStacked-BLS. This model establishes a data storage group for the residual training characteristics of stacked BLS, adding one block at a time. The accuracy rate of each newly added block is output and saved to the data storage group. If the diagnostic rate fails to increase three consecutive times, the block stacking is stopped and the results are output. IPS-SSDStacked-BLS achieved an accuracy of 0.9667 in 0.1775 s. This is almost five times faster than stacked BLS optimized using the grid search method. Compared with the original BLS, its accuracy was 0.0445 higher and the time was approximated. Compared with IPS-SVM, IPS-RF, IPS-1DCNN and 2DCNN, IPS-SSDStacked-BLS was more advantageous in terms of accuracy and time consumption.

Keywords: IPS; SSDStacked-BLS; fault diagnosis; rolling bearings; infrared images (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/17/3677/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/17/3677/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:17:p:3677-:d:1225668

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3677-:d:1225668