Bivariate Unit-Weibull Distribution: Properties and Inference
Roger Tovar-Falón (),
Guillermo Martínez-Flórez () and
Luis Páez-Martínez
Additional contact information
Roger Tovar-Falón: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Monteria 230002, Colombia
Guillermo Martínez-Flórez: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Monteria 230002, Colombia
Luis Páez-Martínez: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Monteria 230002, Colombia
Mathematics, 2023, vol. 11, issue 17, 1-19
Abstract:
In this article, we introduce a novel bivariate probability distribution that is absolutely continuous. Considering the Farlie–Gumbel–Morgenstern (FGM) copula and the unit-Weibull distribution, we can obtain a bivariate unit-Weibull distribution. We evaluate the main properties of the new proposal and use two estimation methods to estimate the parameter for the bivariate probability distribution. A brief Monte Carlo simulation study is conducted to assess the behavior of the employed estimation method and the characteristics of the estimators. Ultimately, as an illustration, a real-life application is presented, demonstrating the utility of the proposal.
Keywords: bivariate probability distribution; distribution for bounded data; proportion data; two-step estimation; copula (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/17/3760/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/17/3760/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:17:p:3760-:d:1230757
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().