EconPapers    
Economics at your fingertips  
 

Bivariate Unit-Weibull Distribution: Properties and Inference

Roger Tovar-Falón (), Guillermo Martínez-Flórez () and Luis Páez-Martínez
Additional contact information
Roger Tovar-Falón: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Monteria 230002, Colombia
Guillermo Martínez-Flórez: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Monteria 230002, Colombia
Luis Páez-Martínez: Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Monteria 230002, Colombia

Mathematics, 2023, vol. 11, issue 17, 1-19

Abstract: In this article, we introduce a novel bivariate probability distribution that is absolutely continuous. Considering the Farlie–Gumbel–Morgenstern (FGM) copula and the unit-Weibull distribution, we can obtain a bivariate unit-Weibull distribution. We evaluate the main properties of the new proposal and use two estimation methods to estimate the parameter for the bivariate probability distribution. A brief Monte Carlo simulation study is conducted to assess the behavior of the employed estimation method and the characteristics of the estimators. Ultimately, as an illustration, a real-life application is presented, demonstrating the utility of the proposal.

Keywords: bivariate probability distribution; distribution for bounded data; proportion data; two-step estimation; copula (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/17/3760/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/17/3760/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:17:p:3760-:d:1230757

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3760-:d:1230757