EconPapers    
Economics at your fingertips  
 

Automatic Piston-Type Flow Standard Device Calibration System

Xinming Song, Xiaoli Wang () and Min Ma
Additional contact information
Xinming Song: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264200, China
Xiaoli Wang: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264200, China
Min Ma: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264200, China

Mathematics, 2023, vol. 11, issue 18, 1-19

Abstract: Measurement of flow is crucial for assuring product quality, increasing manufacturing effectiveness, and promoting the development of science and technology. With the advancement of calibration and automation, standard devices using the mass method, volumetric method, and master meter method have limitations, such as low calibration efficiency and automation, large size, and complex operation. Innovations in this area are desperately needed. To realize the automation of calibrating ultrasonic water meters, a piston-type flow standard device calibration system with a high degree of automation, high calibration efficiency, small size, and easy operation was designed. A piston-type flow standard device was designed, the standard device was modeled, the selection of the main hardware and the design of the automated control of the hardware parts were completed; an automation control system adapted to the flow standard device was developed; and, furthermore, a water meter flow point calibration algorithm integrating the start–stop method and the dual-time method, as well as a water meter flow correction algorithm, was devised to improve the efficiency of ultrasonic water meter calibration. An uncertainty assessment of the designed system was completed; the standard uncertainty and expanded uncertainty of the device were 0.013% and 0.026%. Meanwhile, flow calibration tests were conducted, validating the rationality of the automated calibration algorithm for ultrasonic water meters. The results show that ultrasonic water meters calibrated with flow correction have a flow error within ±3% in the “low flow range” and within ±2% in the “high flow range”, with a repeatability of less than 0.05%. This indicates that a piston-type flow standard device, coupled with an automation calibration control system, can efficiently, accurately, and conveniently perform water meter calibration, and the system has good practical value.

Keywords: flow calibration; piston-type flow standard device; flow point calibration algorithm; uncertainty assessment (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/18/3802/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/18/3802/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:18:p:3802-:d:1233095

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3802-:d:1233095