Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory
Ravi P. Agarwal,
Snezhana Hristova () and
Donal O’Regan
Additional contact information
Ravi P. Agarwal: Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
Snezhana Hristova: Faculty of Mathematics and Informatics, Plovdiv University “P. Hilendarski”, 4000 Plovdiv, Bulgaria
Donal O’Regan: School of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
Mathematics, 2023, vol. 11, issue 18, 1-23
Abstract:
In recent years, various qualitative investigations of the properties of differential equations with different types of generalizations of Riemann–Liouville fractional derivatives were studied and stability properties were investigated, usually using Lyapunov functions. In the application of Lyapunov functions, we need appropriate inequalities for the fractional derivatives of these functions. In this paper, we consider several Riemann–Liouville types of fractional derivatives and prove inequalities for derivatives of convex Lyapunov functions. In particular, we consider the classical Riemann–Liouville fractional derivative, the Riemann–Liouville fractional derivative with respect to a function, the tempered Riemann–Liouville fractional derivative, and the tempered Riemann–Liouville fractional derivative with respect to a function. We discuss their relations and their basic properties, as well as the connection between them. We prove inequalities for Lyapunov functions from a special class, and this special class of functions is similar to the class of convex functions of many variables. Note that, in the literature, the most common Lyapunov functions are the quadratic ones and the absolute value ones, which are included in the studied class. As a result, special cases of our inequalities include Lyapunov functions given by absolute values, quadratic ones, and exponential ones with the above given four types of fractional derivatives. These results are useful in studying types of stability of the solutions of differential equations with the above-mentioned types of fractional derivatives. To illustrate the application of our inequalities, we define Mittag–Leffler stability in time on an interval excluding the initial time point. Several stability criteria are obtained.
Keywords: Riemann–Liouville-type fractional derivative; tempered fractional derivative; fractional derivative with respect to another function; Lyapunov functions; Mittag–Leffler stability in time (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/18/3859/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/18/3859/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:18:p:3859-:d:1236455
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().