EconPapers    
Economics at your fingertips  
 

Control of Network Bursting in a Model Spiking Network Supplied with Memristor—Implemented Plasticity

Sergey V. Stasenko, Alexey N. Mikhaylov () and Victor B. Kazantsev
Additional contact information
Sergey V. Stasenko: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia
Alexey N. Mikhaylov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia
Victor B. Kazantsev: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia

Mathematics, 2023, vol. 11, issue 18, 1-14

Abstract: We consider an unstructured neuron network model composed of excitatory and inhibitory neurons. The synaptic connections are supplied with spike timing-dependent plasticity (STDP). We take the STDP model implemented using a memristor. In normal conditions, the network forms so-called bursting discharges typical of unstructured living networks in dissociated neuronal cultures. Incorporating a biologically inspired model, we demonstrate how memristive plasticity emulates spike timing-dependent plasticity, which is crucial for regulating synchronous brain activity. We have found that, when the memristor-based STDP for inhibitory connections is activated, the bursting dynamics are suppressed and the network turns to a random spiking mode. The dependence of bursting properties on the degree of the memristor-based STDP plasticity is analyzed. These findings hold implications for advancing invasive neurointerfaces and for the identification and management of epileptiform activity.

Keywords: spiking neuron network; memristive synapse; neuron; synchronization (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/18/3888/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/18/3888/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:18:p:3888-:d:1238470

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3888-:d:1238470