Adaptive Multiple Testing Procedure for Clinical Trials with Urn Allocation
Hanan Hammouri (),
Mohammed Ali,
Marwan Alquran,
Areen Alquran,
Ruwa Abdel Muhsen and
Belal Alomari
Additional contact information
Hanan Hammouri: Department of Mathematics and Statistics, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
Mohammed Ali: Department of Mathematics and Statistics, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
Marwan Alquran: Department of Mathematics and Statistics, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
Areen Alquran: Department of Statistics, Yarmouk University, Irbid 21163, Jordan
Ruwa Abdel Muhsen: Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA
Belal Alomari: Department of Mathematics and Statistics, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
Mathematics, 2023, vol. 11, issue 18, 1-20
Abstract:
This work combines the Urn allocation and O’Brien and Fleming multiple testing procedure to compare two treatments in clinical trials in a novel way. It is shown that this approach overcomes the constraints that previously made it challenging to apply the original adaptive design to clinical trials. The method provides unique flexibility, enabling trials to be stopped early if one treatment shows it is superior without compromising the efficiency of the original multiple testing procedure in terms of type I error rate and power. Experimental data and simulated case examples are used to illustrate the efficacy and robustness of this original approach and its potential for usage in a variety of clinical settings.
Keywords: statistical algorithm; sequential group test; O’Brien and Fleming; type I error and power; simulations; SAS software; hypotheses testing; biostatistics; categorical data analysis; urn allocation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/18/3965/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/18/3965/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:18:p:3965-:d:1242621
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().