EconPapers    
Economics at your fingertips  
 

DINA Model with Entropy Penalization

Juntao Wang and Yuan Li ()
Additional contact information
Juntao Wang: School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
Yuan Li: Institute of Applied Mathematics, Shenzhen Polytechnic, Shenzhen 518000, China

Mathematics, 2023, vol. 11, issue 18, 1-16

Abstract: The cognitive diagnosis model (CDM) is an effective statistical tool for extracting the discrete attributes of individuals based on their responses to diagnostic tests. When dealing with cases that involve small sample sizes or highly correlated attributes, not all attribute profiles may be present. The standard method, which accounts for all attribute profiles, not only increases the complexity of the model but also complicates the calculation. Thus, it is important to identify the empty attribute profiles. This paper proposes an entropy-penalized likelihood method to eliminate the empty attribute profiles. In addition, the relation between attribute profiles and the parameter space of item parameters is discussed, and two modified expectation–maximization (EM) algorithms are designed to estimate the model parameters. Simulations are conducted to demonstrate the performance of the proposed method, and a real data application based on the fraction–subtraction data is presented to showcase the practical implications of the proposed method.

Keywords: cognitive diagnosis model; DINA model; penalized likelihood; Shannon entropy; EM algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/18/3993/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/18/3993/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:18:p:3993-:d:1243811

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3993-:d:1243811