EconPapers    
Economics at your fingertips  
 

Adaptive Synthesized Control for Solving the Optimal Control Problem

Askhat Diveev and Elizaveta Shmalko ()
Additional contact information
Askhat Diveev: Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44/2, Vavilova Str., Moscow 119333, Russia
Elizaveta Shmalko: Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44/2, Vavilova Str., Moscow 119333, Russia

Mathematics, 2023, vol. 11, issue 19, 1-18

Abstract: The development of artificial intelligence systems assumes that a machine can independently generate an algorithm of actions or a control system to solve the tasks. To do this, the machine must have a formal description of the problem and possess computational methods for solving it. This article deals with the problem of optimal control, which is the main task in the development of control systems, insofar as all systems being developed must be optimal from the point of view of a certain criterion. However, there are certain difficulties in implementing the resulting optimal control modes. This paper considers an extended formulation of the optimal control problem, which implies the creation of such systems that would have the necessary properties for its practical implementation. To solve it, an adaptive synthesized optimal control approach based on the use of numerical methods of machine learning is proposed. Such control moves the control object, optimally changing the position of the stable equilibrium point in the presence of some initial position uncertainty. As a result, from all possible synthesized controls, one is chosen that is less sensitive to changes in the initial state. As an example, the optimal control problem of a quadcopter with complex phase constraints is considered. To solve this problem, according to the proposed approach, the control synthesis problem is firstly solved to obtain a stable equilibrium point in the state space using a machine learning method of symbolic regression. After that, optimal positions of the stable equilibrium point are searched using a particle swarm optimization algorithm using the source functional from the initial optimal control problem statement. It is shown that such an approach allows for generating the control system automatically by computer, basing this on the formal statement of the problem and then directly implementing it onboard as far as the stabilization system has already been introduced.

Keywords: stabilization; optimization; symbolic regression; synthesized control; evolutionary computations; quadcopter model; ordinary differential equations (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/19/4035/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/19/4035/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:19:p:4035-:d:1245925

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4035-:d:1245925