Adaptive Hyperparameter Fine-Tuning for Boosting the Robustness and Quality of the Particle Swarm Optimization Algorithm for Non-Linear RBF Neural Network Modelling and Its Applications
Zohaib Ahmad,
Jianqiang Li and
Tariq Mahmood ()
Additional contact information
Zohaib Ahmad: Faculty of Information Technology, Beijing University of Technology, Beijing 100024, China
Jianqiang Li: Faculty of Information Technology, Beijing University of Technology, Beijing 100024, China
Tariq Mahmood: Faculty of Information Sciences, Vehari Campus, University of Education, Vehari 61100, Pakistan
Mathematics, 2023, vol. 11, issue 1, 1-16
Abstract:
A method is proposed for recognizing and predicting non-linear systems employing a radial basis function neural network (RBFNN) and robust hybrid particle swarm optimization (HPSO) approach. A PSO is coupled with a spiral-shaped mechanism (HPSO-SSM) to optimize the PSO performance by mitigating its constraints, such as sluggish convergence and the local minimum dilemma. Three advancements are incorporated into the hypothesized HPSO-SSM algorithms to achieve remarkable results. First, the diversity of the search process is promoted to update the inertial weight ω based on the logistic map sequence. Then, two distinct parameters are trained in the original position update algorithm to enhance the work efficiency of the successive generation. Finally, the proposed approach employs a spiral-shaped mechanism as a local search operator inside the optimum solution space. Moreover, the HPSO-SSM method concurrently improves the RBFNN parameters and network size, building a model with a compact configuration and higher precision. Two non-linear benchmark functions and the total phosphorus (TP) modelling issue in a waste water treatment process (WWTP) are utilized to assess the overall efficacy of the creative technique. The results of testing indicate that the projected HPSO-SSM-RBFNN algorithm performed very effectively.
Keywords: RBFNN; non-linear system modelling; time-series prediction; HPSO (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/1/242/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/1/242/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:1:p:242-:d:1023463
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().