Start-Up Multilayer Electro-Osmotic Flow of Maxwell Fluids through an Annular Microchannel under Hydrodynamic Slip Conditions
Cesar A. Valencia,
David A. Torres,
Clara G. Hernández,
Juan P. Escandón (),
Juan R. Gómez and
René O. Vargas
Additional contact information
Cesar A. Valencia: Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, Mexico
David A. Torres: Mantenimiento Industrial, Universidad Tecnológica de Tula-Tepeji, Tula de Allende 42830, Mexico
Clara G. Hernández: Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, Mexico
Juan P. Escandón: Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, Mexico
Juan R. Gómez: Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, Mexico
René O. Vargas: Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Ciudad de México 02250, Mexico
Mathematics, 2023, vol. 11, issue 20, 1-29
Abstract:
The present investigation analyzes the transient multilayer electro-osmotic flow through an annular microchannel with hydrophobic walls. The fluids are considered immiscible and viscoelastic, following the Maxwell rheological model. In the problem examined, the linearized Poisson–Boltzmann and Cauchy momentum equations are used to determine the electric potential distribution and the flow field, respectively. Here, different interfacial phenomena are studied through the imposed boundary conditions, such as the hydrodynamic slip and specified zeta potentials at solid–liquid interfaces, the velocity continuity, the electroviscous stresses balance, the potential difference, and the continuity of electrical displacements at the interfaces between fluids. The semi-analytic solution uses the Laplace transform theory. In the results, the velocity profiles and velocity tracking show the oscillatory behavior of flow, which strongly depends on the dimensionless relaxation time. Furthermore, the hydrodynamic slip on the channel walls contributes to the release of energy stored in the fluids due to elastic effects at the start-up of the flow. Similarly, other dimensionless parameters are also investigated. This research aims to predict the parallel flow behavior in microfluidic devices under electro-osmotic effects.
Keywords: electro-osmotic; annular microchannel; hydrophobic walls; viscoelastic fluids; multilayer flow (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/20/4231/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/20/4231/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:20:p:4231-:d:1256780
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().