EconPapers    
Economics at your fingertips  
 

Multi-Objective Q-Learning-Based Brain Storm Optimization for Integrated Distributed Flow Shop and Distribution Scheduling Problems

Shuo Zhang, Jianyou Xu () and Yingli Qiao
Additional contact information
Shuo Zhang: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Jianyou Xu: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Yingli Qiao: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Mathematics, 2023, vol. 11, issue 20, 1-25

Abstract: In recent years, integrated production and distribution scheduling (IPDS) has become an important subject in supply chain management. However, IPDS considering distributed manufacturing environments is rarely researched. Moreover, reinforcement learning is seldom combined with metaheuristics to deal with IPDS problems. In this work, an integrated distributed flow shop and distribution scheduling problem is studied, and a mathematical model is provided. Owing to the problem’s NP-hard nature, a multi-objective Q-learning-based brain storm optimization is designed to minimize makespan and total weighted earliness and tardiness. In the presented approach, a double-string representation method is utilized, and a dynamic clustering method is developed in the clustering phase. In the generating phase, a global search strategy, a local search strategy, and a simulated annealing strategy are introduced. A Q-learning process is performed to dynamically choose the generation strategy. It consists of four actions defined as the combinations of these strategies, four states described by convergence and uniformity metrics, a reward function, and an improved ε-greedy method. In the selecting phase, a newly defined selection method is adopted. To assess the effectiveness of the proposed approach, a comparison pool consisting of four prevalent metaheuristics and a CPLEX optimizer is applied to conduct numerical experiments and statistical tests. The results suggest that the designed approach outperforms its competitors in acquiring promising solutions when handling the considered problem.

Keywords: integrated production and distribution scheduling; distributed flow shop; brain storm optimization; Q-learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/20/4306/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/20/4306/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:20:p:4306-:d:1260687

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4306-:d:1260687