Novel Fractional Order and Stochastic Formulations for the Precise Prediction of Commercial Photovoltaic Curves
Othman A. M. Omar,
Ahmed O. Badr () and
Ibrahim Mohamed Diaaeldin ()
Additional contact information
Othman A. M. Omar: Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
Ahmed O. Badr: Electric Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
Ibrahim Mohamed Diaaeldin: Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
Mathematics, 2023, vol. 11, issue 21, 1-19
Abstract:
To effectively represent photovoltaic (PV) modules while considering their dependency on changing environmental conditions, three novel mathematical and empirical formulations are proposed in this study to model PV curves with minimum effort and short timing. The three approaches rely on distinct mathematical techniques and definitions to formulate PV curves using function representations. We develop our models through fractional derivatives and stochastic white noise. The first empirical model is proposed using a fractional regression tool driven by the Liouville-Caputo fractional derivative and then implemented by the Mittag-Leffler function representation. Further, the fractional-order stochastic ordinary differential equation (ODE) tool is employed to generate two effective generic models. In this work, multiple commercial PV modules are modeled using the proposed fractional and stochastic formulations. Using the experimental data of the studied PV panels at different climatic conditions, we evaluate the proposed models’ accuracy using two effective statistical indices: the root mean squares error (RMSE) and the determination coefficient (R 2 ). Finally, the proposed approaches are compared to several integer-order models in the literature where the proposed models’ precisely follow the real PV curves with a higher R 2 and lower RMSE values at different irradiance levels lower than 800 w/m 2 , and module temperature levels higher than 50 °C.
Keywords: fractional order derivatives; stochastic modeling; renewable energy imitation; photovoltaic curves formulation; mathematical modeling (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/21/4417/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/21/4417/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:21:p:4417-:d:1266934
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().