EconPapers    
Economics at your fingertips  
 

Advanced Deep Learning Techniques for High-Quality Synthetic Thermal Image Generation

Vicente Pavez, Gabriel Hermosilla (), Manuel Silva and Gonzalo Farias
Additional contact information
Vicente Pavez: Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile
Gabriel Hermosilla: Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile
Manuel Silva: Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile
Gonzalo Farias: Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile

Mathematics, 2023, vol. 11, issue 21, 1-16

Abstract: In this paper, we introduce a cutting-edge system that leverages state-of-the-art deep learning methodologies to generate high-quality synthetic thermal face images. Our unique approach integrates a thermally fine-tuned Stable Diffusion Model with a Vision Transformer (ViT) classifier, augmented by a Prompt Designer and Prompt Database for precise image generation control. Through rigorous testing across various scenarios, the system demonstrates its capability in producing accurate and superior-quality thermal images. A key contribution of our work is the development of a synthetic thermal face image database, offering practical utility for training thermal detection models. The efficacy of our synthetic images was validated using a facial detection model, achieving results comparable to real thermal face images. Specifically, a detector fine-tuned with real thermal images achieved a 97% accuracy rate when tested with our synthetic images, while a detector trained exclusively on our synthetic data achieved an accuracy of 98%. This research marks a significant advancement in thermal image synthesis, paving the way for its broader application in diverse real-world scenarios.

Keywords: deep learning; thermal imaging; face detection; generative models (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/21/4446/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/21/4446/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:21:p:4446-:d:1268366

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4446-:d:1268366