Time-Inhomogeneous Finite Birth Processes with Applications in Epidemic Models
Virginia Giorno and
Amelia G. Nobile ()
Additional contact information
Virginia Giorno: Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
Amelia G. Nobile: Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
Mathematics, 2023, vol. 11, issue 21, 1-31
Abstract:
We consider the evolution of a finite population constituted by susceptible and infectious individuals and compare several time-inhomogeneous deterministic models with their stochastic counterpart based on finite birth processes. For these processes, we determine the explicit expressions of the transition probabilities and of the first-passage time densities. For time-homogeneous finite birth processes, the behavior of the mean and the variance of the first-passage time density is also analyzed. Moreover, the approximate duration until the entire population is infected is obtained for a large population size.
Keywords: population growth models; probability distribution of the number of infections; duration of the epidemic; first-passage time density; asymptotic behaviors (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/21/4521/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/21/4521/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:21:p:4521-:d:1272972
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().