EconPapers    
Economics at your fingertips  
 

Design of Network Intrusion Detection System Using Lion Optimization-Based Feature Selection with Deep Learning Model

Rayed AlGhamdi ()
Additional contact information
Rayed AlGhamdi: Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Mathematics, 2023, vol. 11, issue 22, 1-17

Abstract: In the domain of network security, intrusion detection systems (IDSs) play a vital role in data security. While the utilization of the internet amongst consumers is increasing on a daily basis, the significance of security and privacy preservation of system alerts, due to malicious actions, is also increasing. IDS is a widely executed system that protects computer networks from attacks. For the identification of unknown attacks and anomalies, several Machine Learning (ML) approaches such as Neural Networks (NNs) are explored. However, in real-world applications, the classification performances of these approaches are fluctuant with distinct databases. The major reason for this drawback is the presence of some ineffective or redundant features. So, the current study proposes the Network Intrusion Detection System using a Lion Optimization Feature Selection with a Deep Learning (NIDS-LOFSDL) approach to remedy the aforementioned issue. The NIDS-LOFSDL technique follows the concept of FS with a hyperparameter-tuned DL model for the recognition of intrusions. For the purpose of FS, the NIDS-LOFSDL method uses the LOFS technique, which helps in improving the classification results. Furthermore, the attention-based bi-directional long short-term memory (ABiLSTM) system is applied for intrusion detection. In order to enhance the intrusion detection performance of the ABiLSTM algorithm, the gorilla troops optimizer (GTO) is deployed so as to perform hyperparameter tuning. Since trial-and-error manual hyperparameter tuning is a tedious process, the GTO-based hyperparameter tuning process is performed, which demonstrates the novelty of the work. In order to validate the enhanced solution of the NIDS-LOFSDL system in terms of intrusion detection, a comprehensive range of experiments was performed. The simulation values confirm the promising results of the NIDS-LOFSDL system compared to existing DL methodologies, with a maximum accuracy of 96.88% and 96.92% on UNSW-NB15 and AWID datasets, respectively.

Keywords: network intrusion detection system; network security; lion optimization algorithm; feature selection; deep learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/22/4607/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/22/4607/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:22:p:4607-:d:1277969

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4607-:d:1277969