A Heavy-Tailed Distribution Based on the Lomax–Rayleigh Distribution with Applications to Medical Data
Karol I. Santoro,
Diego I. Gallardo,
Osvaldo Venegas (),
Isaac E. Cortés and
Héctor W. Gómez
Additional contact information
Karol I. Santoro: Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Diego I. Gallardo: Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Isaac E. Cortés: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos 13560-095, Brazil
Héctor W. Gómez: Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2023, vol. 11, issue 22, 1-15
Abstract:
In this paper, we extend the Lomax–Rayleigh distribution to increase its kurtosis. The construction of this distribution is based on the idea of the Slash distribution, that is, its representation is based on the quotient of two independent random variables, one being a random variable with a Lomax–Rayleigh distribution and the other a beta ( q , 1 ) . Based on the representation of this family, we study its basic properties, such as moments, coefficients of skewness, and kurtosis. We perform statistical inference using the methods of moments and maximum likelihood. To illustrate this methodology, we apply it to two real data sets.
Keywords: Slash distribution; Lomax–Rayleigh distribution; kurtosis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/22/4626/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/22/4626/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:22:p:4626-:d:1278869
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().