A Model-Free Control Scheme for Rehabilitation Robots: Integrating Real-Time Observations with a Deep Neural Network for Enhanced Control and Reliability
Hajid Alsubaie and
Ahmed Alotaibi ()
Additional contact information
Hajid Alsubaie: Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia
Ahmed Alotaibi: Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia
Mathematics, 2023, vol. 11, issue 23, 1-14
Abstract:
Effective control of rehabilitation robots is of paramount importance and requires increased attention to achieve a fully reliable, automated system for practical applications. As the domain of robotic rehabilitation progresses rapidly, the imperative for precise and dependable control mechanisms grows. In this study, we present an innovative control scheme integrating state-of-the-art machine learning algorithms with traditional control techniques. Our approach offers enhanced adaptability to patient-specific needs while ensuring safety and effectiveness. We introduce a model-free feedback linearization control method underpinned by deep neural networks and online observation. While our controller is model-free, and system dynamics are learned during training phases, we employ an online observer to robustly estimate uncertainties that the systems may face in real-time, beyond their training. The proposed technique was tested through different simulations with varying initial conditions and step references, demonstrating the controller’s robustness and adaptability. These simulations, combined with Lyapunov’s stability verification, validate the efficacy of our proposed scheme in effectively controlling the system under diverse conditions.
Keywords: rehabilitation robots; machine learning integration; model-free control; patient-specific adaptability; robotic rehabilitation; online uncertainty estimation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/23/4791/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/23/4791/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:23:p:4791-:d:1288947
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().