EconPapers    
Economics at your fingertips  
 

Endograph Metric and a Version of the Arzelà–Ascoli Theorem for Fuzzy Sets

Juan J. Font, Sergio Macario and Manuel Sanchis ()
Additional contact information
Juan J. Font: Institut de Matemàtiques i Applicacions de Castelló (IMAC), Universitat Jaume I de Castelló, Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Sergio Macario: Institut de Matemàtiques i Applicacions de Castelló (IMAC), Universitat Jaume I de Castelló, Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Manuel Sanchis: Institut de Matemàtiques i Applicacions de Castelló (IMAC), Universitat Jaume I de Castelló, Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain

Mathematics, 2023, vol. 11, issue 2, 1-8

Abstract: In this paper, we provide several Arzelà–Ascoli-type results on the space of all continuous functions from a Tychonoff space X into the fuzzy sets of R n , ( F U S C B ( R n ) , H e n d ) , which are upper semi-continuous and have bounded support endowed with the endograph metric. Namely, we obtain positive results when X is considered to be a k r -space and C ( X , ( F U S C B ( R n ) , H e n d ) ) is endowed with the compact open topology, as well as when we assume that X is pseudocompact and C ( X , ( F U S C B ( R n ) , H e n d ) ) is equipped with the uniform topology.

Keywords: Arzelà–Ascoli theorem; compactness; fuzzy sets; endograph metric (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/2/260/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/2/260/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:2:p:260-:d:1024580

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:260-:d:1024580