Endograph Metric and a Version of the Arzelà–Ascoli Theorem for Fuzzy Sets
Juan J. Font,
Sergio Macario and
Manuel Sanchis ()
Additional contact information
Juan J. Font: Institut de Matemàtiques i Applicacions de Castelló (IMAC), Universitat Jaume I de Castelló, Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Sergio Macario: Institut de Matemàtiques i Applicacions de Castelló (IMAC), Universitat Jaume I de Castelló, Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Manuel Sanchis: Institut de Matemàtiques i Applicacions de Castelló (IMAC), Universitat Jaume I de Castelló, Av. Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain
Mathematics, 2023, vol. 11, issue 2, 1-8
Abstract:
In this paper, we provide several Arzelà–Ascoli-type results on the space of all continuous functions from a Tychonoff space X into the fuzzy sets of R n , ( F U S C B ( R n ) , H e n d ) , which are upper semi-continuous and have bounded support endowed with the endograph metric. Namely, we obtain positive results when X is considered to be a k r -space and C ( X , ( F U S C B ( R n ) , H e n d ) ) is endowed with the compact open topology, as well as when we assume that X is pseudocompact and C ( X , ( F U S C B ( R n ) , H e n d ) ) is equipped with the uniform topology.
Keywords: Arzelà–Ascoli theorem; compactness; fuzzy sets; endograph metric (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/2/260/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/2/260/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:2:p:260-:d:1024580
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().