EconPapers    
Economics at your fingertips  
 

Categorical Variable Mapping Considerations in Classification Problems: Protein Application

Gerardo Alfonso Perez () and Raquel Castillo
Additional contact information
Gerardo Alfonso Perez: Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain
Raquel Castillo: Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain

Mathematics, 2023, vol. 11, issue 2, 1-26

Abstract: The mapping of categorical variables into numerical values is common in machine learning classification problems. This type of mapping is frequently performed in a relatively arbitrary manner. We present a series of four assumptions (tested numerically) regarding these mappings in the context of protein classification using amino acid information. This assumption involves the mapping of categorical variables into protein classification problems without the need to use approaches such as natural language process (NLP). The first three assumptions relate to equivalent mappings, and the fourth involves a comparable mapping using a proposed eigenvalue-based matrix representation of the amino acid chain. These assumptions were tested across a range of 23 different machine learning algorithms. It is shown that the numerical simulations are consistent with the presented assumptions, such as translation and permutations, and that the eigenvalue approach generates classifications that are statistically not different from the base case or that have higher mean values while at the same time providing some advantages such as having a fixed predetermined dimensions regardless of the size of the analyzed protein. This approach generated an accuracy of 83.25%. An optimization algorithm is also presented that selects an appropriate number of neurons in an artificial neural network applied to the above-mentioned protein classification problem, achieving an accuracy of 85.02%. The model includes a quadratic penalty function to decrease the chances of overfitting.

Keywords: categorical variables; numerical variables; mappings (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/2/279/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/2/279/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:2:p:279-:d:1025961

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:279-:d:1025961