EconPapers    
Economics at your fingertips  
 

Peristalsis of Nanofluids via an Inclined Asymmetric Channel with Hall Effects and Entropy Generation Analysis

Abdulwahed Muaybid A. Alrashdi ()
Additional contact information
Abdulwahed Muaybid A. Alrashdi: School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK

Mathematics, 2023, vol. 11, issue 2, 1-29

Abstract: This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the channel. The physical effects, such as Hall current, mixed convection, Ohmic heating, and heat generation/annihilation, are also considered. Mathematical modeling from the given physical description is formulated while employing the “long wavelength, low Reynolds number” approximations. Analytical and numerical procedures allow for the determination of flow behavior in the resulting system, the results of which are presented in the form of tables and graphs, in order to facilitate the physical analysis. The results indicate that the growth of nanoparticle volume fraction corresponds to a reduction in temperature, entropy generation, velocity, and pressure gradient. The enhanced Hall and Brinkman parameters reduce the entropy generation and temperature for such flows, whereas the enhanced permeability parameter reduces the velocity and pressure gradient considerably. Furthermore, a comparison of the heat transfer rates for the two results, for different physical parameters, indicates that these results agree well. The significance of the underlying study lies in the fact that it analyzes the peristalsis of a non-Newtonian nanofluid, where the rheological characteristics of the fluid are predicted using the Carreau-Yasuda model and by considering the various physical effects.

Keywords: peristalsis; nanofluid; permeable medium; mixed convection; asymmetric channel; entropy; homotopy (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/2/458/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/2/458/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:2:p:458-:d:1036496

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:458-:d:1036496