EconPapers    
Economics at your fingertips  
 

Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia

Luis Fernando Grisales-Noreña, Oscar Danilo Montoya (), Brandon Cortés-Caicedo, Farhad Zishan and Javier Rosero-García
Additional contact information
Luis Fernando Grisales-Noreña: Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile
Oscar Danilo Montoya: Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Brandon Cortés-Caicedo: Departamento de Mecatrónica y Electromecánica, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Medellín 050036, Colombia
Farhad Zishan: Department of Electrical Engineering, Sahand University of Technology, Tabriz 5513351996, Iran
Javier Rosero-García: Grupo de Investigación Electrical Machines & Drives (EM&D), Departamento de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá 111321, Colombia

Mathematics, 2023, vol. 11, issue 2, 1-20

Abstract: This paper deals with the problem regarding the optimal operation of photovoltaic (PV) generation sources in AC distribution networks with a single-phase structure, taking into consideration different objective functions. The problem is formulated as a multi-period optimal power flow applied to AC distribution grids, which generates a nonlinear programming (NLP) model with a non-convex structure. Three different objective functions are considered in the optimization model, each optimized using a single-objective function approach. These objective functions are (i) an operating costs function composed of the energy purchasing costs at the substation bus, added with the PV maintenance costs; (ii) the costs of energy losses; and (iii) the total CO 2 emissions at the substation bus. All these functions are minimized while considering a frame of operation of 24 h, i.e., in a day-ahead operation environment. To solve the NLP model representing the studied problem, the General Algebraic Modeling System (GAMS) and its SNOPT solver are used. Two different test feeders are used for all the numerical validations, one of them adapted to the urban operation characteristics in the Metropolitan Area of Medellín, which is composed of 33 nodes, and the other one adapted to isolated rural operating conditions, which has 27 nodes and is located in the department of Chocó, Colombia (municipality of Capurganá). Numerical comparisons with multiple combinatorial optimization methods (particle swarm optimization, the continuous genetic algorithm, the Vortex Search algorithm, and the Ant Lion Optimizer) demonstrate the effectiveness of the GAMS software to reach the optimal day-ahead dispatch of all the PV sources in both distribution grids.

Keywords: day-ahead operation of PV sources; energy purchasing costs; operation and maintenance costs of PV sources; energy losses costs; nonlinear programming formulation; GAMS software (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/2/484/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/2/484/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:2:p:484-:d:1037786

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:484-:d:1037786