A Bimodal Extension of the Epsilon-Skew-Normal Model
Juan Duarte,
Guillermo Martínez-Flórez,
Diego Ignacio Gallardo,
Osvaldo Venegas () and
Héctor W. Gómez
Additional contact information
Juan Duarte: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Guillermo Martínez-Flórez: Departamento de Matemática y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Colombia
Diego Ignacio Gallardo: Departamento de Matemáticas, Facultad de Ingeniería, Universidad de Atacama, Copiapó 7820436, Chile
Osvaldo Venegas: Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4780000, Chile
Héctor W. Gómez: Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Mathematics, 2023, vol. 11, issue 3, 1-18
Abstract:
This article introduces a bimodal model based on the epsilon-skew-normal distribution. This extension generates bimodal distributions similar to those produced by the mixture of normal distributions. We study the basic properties of this new family. We apply maximum likelihood estimators, calculate the information matrix and present a simulation study to assess parameter recovery. Finally, we illustrate the results to three real data sets, suggesting this new distribution as a plausible alternative for modelling bimodal data.
Keywords: bimodality; epsilon-skew-normal distribution; maximum likelihood estimation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/3/507/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/3/507/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:3:p:507-:d:1039384
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().