Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials
José M. Alonso (),
Javier Ibáñez,
Emilio Defez and
Fernando Alvarruiz
Additional contact information
José M. Alonso: Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Javier Ibáñez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Emilio Defez: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Fernando Alvarruiz: Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Mathematics, 2023, vol. 11, issue 3, 1-22
Abstract:
This paper presents three different alternatives to evaluate the matrix hyperbolic cosine using Bernoulli matrix polynomials, comparing them from the point of view of accuracy and computational complexity. The first two alternatives are derived from two different Bernoulli series expansions of the matrix hyperbolic cosine, while the third one is based on the approximation of the matrix exponential by means of Bernoulli matrix polynomials. We carry out an analysis of the absolute and relative forward errors incurred in the approximations, deriving corresponding suitable values for the matrix polynomial degree and the scaling factor to be used. Finally, we use a comprehensive matrix testbed to perform a thorough comparison of the alternative approximations, also taking into account other current state-of-the-art approaches. The most accurate and efficient options are identified as results.
Keywords: Bernoulli matrix polynomials; matrix hyperbolic cosine; matrix functions approximation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/3/520/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/3/520/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:3:p:520-:d:1039860
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().