Simultaneous Features of CC Heat Flux on Dusty Ternary Nanofluid (Graphene + Tungsten Oxide + Zirconium Oxide) through a Magnetic Field with Slippery Condition
Basma Souayeh ()
Additional contact information
Basma Souayeh: Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
Mathematics, 2023, vol. 11, issue 3, 1-17
Abstract:
The purpose of this work is to offer a unique theoretical ternary nanofluid (graphene/tungsten oxide/zirconium oxide) framework for better heat transfer. This model describes how to create better heat conduction than a hybrid nanofluid. Three different nanostructures with different chemical and physical bonds are suspended in water to create the ternary nanofluid (graphene/tungsten oxide/zirconium oxide). Toxic substances are broken down, the air is purified, and other devices are cooled thanks to the synergy of these nanoparticles. The properties of ternary nanofluids are discussed in this article, including their thermal conductivity, specific heat capacitance, viscosity, and density. In addition, heat transport phenomena are explained by the Cattaneo–Christov (CC) heat flow theory. In the modeling of the physical phenomena under investigation, the impacts of thermal nonlinear radiation and velocity slip are considered. By using the right transformations, flow-generating PDEs are converted into nonlinear ordinary differential equations. The parameters’ impacts on the velocity and temperature fields are analyzed in detail. The modeled problem is graphically handled in MATLAB using a numerical technique (BVP4c). Graphical representations of the important factors affecting temperature and velocity fields are illustrated through graphs. The findings disclose that the performance of ternary nanofluid phase heat transfer is improved compared to dusty phase performance. Furthermore, the magnetic parameter and the velocity slip parameter both experience a slowing-down effect of their respective velocities.
Keywords: slip flow; CC heat flux; suspended particles; ternary nanoparticles; nonlinear radiation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/3/554/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/3/554/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:3:p:554-:d:1042293
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().