Investigation of the Stress-Strain State of a Rectangular Plate after a Temperature Shock
A. V. Sedelnikov (),
D. I. Orlov (),
V. V. Serdakova and
A. S. Nikolaeva
Additional contact information
A. V. Sedelnikov: Institute of Aerospace Engineering of Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia
D. I. Orlov: Institute of Aerospace Engineering of Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia
V. V. Serdakova: Institute of Aerospace Engineering of Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia
A. S. Nikolaeva: Institute of Aerospace Engineering of Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia
Mathematics, 2023, vol. 11, issue 3, 1-12
Abstract:
In this paper, the temperature shock phenomenon is considered. This phenomenon occurs during the operation of engineering structures on Earth and in outer space. A rectangular plate has been selected as a structural element exposed to temperature shock. It has a rigidly sealed edge and three free edges. A one-dimensional third initial boundary value problem of thermal conductivity was posed and solved to study the stress–strain state of the plate. Fourier’s law was used to solve this problem, taking into account the inertial term, since the temperature shock is a fairly fast-dynamic phenomenon. It was believed that all the thermophysical properties of the plate are constant and do not depend on its temperature. As a result, the temperature field of the plate was obtained after the temperature shock. This temperature field generates temperature stresses inside the plate, which lead to temperature deformations. To determine these deformations, the initial boundary value problem of thermoelasticity was posed and solved in this work. The Sophie Germain equation was used while solving this problem. To describe the plate, the theory of flexible plates was used, taking into account the stresses in the middle surface of the plate. Next, the accuracy of analytical solutions for the points displacement of a homogeneous plate subjected to a temperature shock was investigated. The temperature field was constructed using a numerical simulation. Functions of the displacement vector components were obtained using approximate analytical solutions. The accuracy of approximate analytical solutions for the components of the plate points deformation vector was estimated. The obtained results allow us to describe the stress–strain state of the plate after the temperature shock. The results of this work can be used in the design of engineering structures for both terrestrial and space purposes in terms of stability calculations and the implementation of deformation constraints.
Keywords: temperature shock; stress–strain state; thermoelasticity problem; the third initial boundary value problem; approximate analytical solution; solar panel (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/3/638/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/3/638/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:3:p:638-:d:1047874
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().