Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19
Ahed Abugabah () and
Farah Shahid
Additional contact information
Ahed Abugabah: College of Technological Innovation, Abu Dhabi Campus, Zayed University, FF2-0-056, Abu Dhabi P.O. Box 144534, United Arab Emirates
Farah Shahid: Department of Computer Sciences, Sub Campus Burewala-Vehari, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
Mathematics, 2023, vol. 11, issue 4, 1-19
Abstract:
The rapidly growing number of COVID-19 infected and death cases has had a catastrophic worldwide impact. As a case study, the total number of death cases in Algeria is over two thousand people (increased with time), which drives us to search its possible trend for early warning and control. In this paper, the proposed model for making a time-series forecast for daily and total infected cases, death cases, and recovered cases for the countrywide Algeria COVID-19 dataset is a two-layer dropout gated recurrent unit (TDGRU). Four performance parameters were used to assess the model’s performance: mean absolute error (MAE), root mean squared error (RMSE), R 2 , and mean absolute percentage error (MAPE). The results generated with TDGRU are compared with actual numbers as well as predictions with conventional time-series techniques, such as autoregressive integrated moving average (ARIMA), machine learning model of linear regression (LR), and the time series-based deep learning method of long short-term memory (LSTM). The experiment results on different time horizons show that the TDGRU model outperforms the other forecasting methods that deliver correct predictions with lower prediction errors. Furthermore, since this TDGRU is based on a relatively simpler architecture than the LSTM, in comparison to LSTM-based models, it features a significantly reduced number of parameters, a shorter training period, a lower memory storage need, and a more straightforward hardware implementation.
Keywords: COVID-19; LSTM; TDGRU; traditional regression models; time series analysis (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/1051/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/1051/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:1051-:d:1073444
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().