EconPapers    
Economics at your fingertips  
 

Sppn-Rn101: Spatial Pyramid Pooling Network with Resnet101-Based Foreign Object Debris Detection in Airports

Abdulaziz Alshammari () and Rakan C. Chabaan
Additional contact information
Abdulaziz Alshammari: Information Systems Department, College of Computer Information and Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
Rakan C. Chabaan: Hyundai American Technical Center, Inc., Superior Township, MI 48198, USA

Mathematics, 2023, vol. 11, issue 4, 1-19

Abstract: Over the past few years, aviation security has turned into a vital domain as foreign object debris (FOD) on the airport paved path possesses an enormous possible threat to airplanes at the time of takeoff and landing. Hence, FOD’s precise identification remains significant for assuring airplane flight security. The material features of FOD remain the very critical criteria for comprehending the destruction rate endured by an airplane. Nevertheless, the most frequent identification systems miss an efficient methodology for automated material identification. This study proffers a new FOD technique centered on transfer learning and also a mainstream deep convolutional neural network. For object detection (OD), this embraces the spatial pyramid pooling network with ResNet101 (SPPN-RN101), which assists in concatenating the local features upon disparate scales within a similar convolution layer with fewer position errors while identifying little objects. Additionally, Softmax with Adam Optimizer in CNN enhances the training speed with greater identification accuracy. This study presents FOD’s image dataset called FOD in Airports (FODA). In addition to the bounding boxes’ principal annotations for OD, FODA gives labeled environmental scenarios. Consequently, every annotation instance has been additionally classified into three light-level classes (bright, dim, and dark) and two weather classes (dry and wet). The proffered SPPN-ResNet101 paradigm is correlated to the former methodologies, and the simulation outcomes exhibit that the proffered study executes an AP medium of 0.55 for the COCO metric, 0.97 AP for the pascal metric, and 0.83 MAP of pascal metric.

Keywords: foreign object debris (FOD); pre-processing; aircraft; classification; augmentation; annotation; resizing (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/841/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/841/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:841-:d:1060344

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:841-:d:1060344