EconPapers    
Economics at your fingertips  
 

Amplitude-Versus-Angle (AVA) Inversion for Pre-Stack Seismic Data with L0-Norm-Gradient Regularization

Ronghuo Dai () and Jun Yang
Additional contact information
Ronghuo Dai: School of Mathematics and Information, China West Normal University, Nanchong 637009, China
Jun Yang: School of Mathematics, Zunyi Normal University, Zunyi 563006, China

Mathematics, 2023, vol. 11, issue 4, 1-15

Abstract: Amplitude-versus-angle (AVA) inversion for pre-stack seismic data is a key technology in oil and gas reservoir prediction. Conventional AVA inversion contains two main stages. Stage one estimates the relative change rates of P-wave velocity, S-wave velocity and density, and stage two obtains the P-wave velocity, S-wave velocity and density based on their relative change rates through trace integration. An alternative way merges these two stages to estimate P-wave velocity, S-wave velocity and density directly. This way is less sensitive to noise in seismic data compared to conventional two-stage AVA inversion. However, the regularization for the direct AVA inversion is more complex. To regularize this merged inverse problem, the L0-norm-gradient of P-wave velocity, S-wave velocity and density was used. L0-norm-gradient regularization can provide inversion results with blocky features to make formation interfaces and geological edges precise. Then, L0-norm-gradient regularized AVA inversion was performed on the synthetic seismic traces. Next, a real seismic data line that contains three partial angle stack profiles was used to test the practice application. The inversion results from synthetic and real seismic data showed that L0-norm-gradient regularized AVA inversion is an effective way to estimate P-wave velocity, S-wave velocity and density.

Keywords: pre-stack seismic data; AVA inversion; L0-norm-gradientregularization; reservoir prediction (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/880/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/880/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:880-:d:1062906

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:880-:d:1062906