EconPapers    
Economics at your fingertips  
 

Runge–Kutta–Nyström Pairs of Orders 8(6) for Use in Quadruple Precision Computations

Vladislav N. Kovalnogov, Alexander F. Matveev, Dmitry A. Generalov, Tamara V. Karpukhina, Theodore E. Simos () and Charalampos Tsitouras
Additional contact information
Vladislav N. Kovalnogov: Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
Alexander F. Matveev: Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
Dmitry A. Generalov: Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
Tamara V. Karpukhina: Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
Theodore E. Simos: Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
Charalampos Tsitouras: General Department, National & Kapodistrian University of Athens, Euripus Campus, 34400 Psachna, Greece

Mathematics, 2023, vol. 11, issue 4, 1-13

Abstract: The second-order system of non-stiff Initial Value Problems (IVP) is considered and, in particular, the case where the first derivatives are absent. This kind of problem is interesting since since it arises in many significant problems, e.g., in Celestial mechanics. Runge–Kutta–Nyström (RKN) pairs are perhaps the most successful approaches for solving such type of IVPs. To achieve a pair attaining orders eight and six, we have to solve a well-defined set of equations with respect to the coefficients. Here, we provide a simplified form of these equations in a robust algorithm. When creating such pairings for use in double precision arithmetic, numerous conditions are often satisfied. First and foremost, we strive to keep the coefficients’ magnitudes small to prevent accuracy loss. We may, however, allow greater coefficients when working with quadruple precision. Then, we may build pairs of orders eight and six with significantly smaller truncation errors. In this paper, a novel pair is generated that, as predicted, outperforms state-of-the-art pairs of the same orders in a collection of important problems.

Keywords: initial value problem; second order; Runge–Kutta–Nyström (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/891/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/891/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:891-:d:1063710

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:891-:d:1063710