EconPapers    
Economics at your fingertips  
 

Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain

Kangye Tan, Yihui Tian, Fang Xu and Chunsheng Li ()
Additional contact information
Kangye Tan: School of Business, Macau University of Science and Technology, Macao 999078, China
Yihui Tian: Faculty of Business, City University of Macau, Macao 999078, China
Fang Xu: School of National Safety and Emergency Management, Beijing Normal University at Zhuhai, Zhuhai 519087, China
Chunsheng Li: School of Business, Macau University of Science and Technology, Macao 999078, China

Mathematics, 2023, vol. 11, issue 4, 1-26

Abstract: In the context of carbon neutralization, the electric vehicle and energy storage market is growing rapidly. As a result, battery recycling is an important work with the consideration of the advent of battery retirement and resource constraints, environmental factors, resource regional constraints, and price factors. Based on the theoretical research of intelligent algorithm and mathematical models, an integer programming model of urban power battery reverse supply chain scheduling was established with the goal of the highest customer satisfaction and the least total cost of logistics and distribution, to study the influence of the resources and operation status of a built city recycling center and dismantling center on the power battery reverse supply chain. The model includes vehicle load, customer demand point satisfaction range, and service capacity constraints. This study collected regional image data, conducted image analysis, and further designed an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) optimization algorithm suitable to solve the global optimization problem by introducing the improvement strategy of convergence rate, particle search, and the traditional elite individual retention. The results verified the practicability of the model, the global optimization ability of the algorithm to solve the problem, and the operation speed through comparing the results obtained from the basic algorithm. A reasonable comprehensive solution for the location and path optimization of the urban recycling center was also obtained. Multi-objective optimization was carried out in vehicle scheduling, facility construction, and customer satisfaction construction. The basic algorithm and integrated optimization software were compared. We found that the model and the scheme provided by the algorithm can significantly reduce the operation cost of the enterprise. This research provided new insights for enterprises to effectively utilize resources and optimize the reverse supply chain scheduling of an urban power battery.

Keywords: power battery; reverse supply chain; scheduling; NSGA-II; optimization algorithm (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/901/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/901/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:901-:d:1064234

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:901-:d:1064234