EconPapers    
Economics at your fingertips  
 

Comparative Study of Numerical Methods for Solving the Fresnel Integral in Aperiodic Diffractive Lenses

Adrián Garmendía-Martínez (), Francisco M. Muñoz-Pérez, Walter D. Furlan, Fernando Giménez, Juan C. Castro-Palacio, Juan A. Monsoriu and Vicente Ferrando
Additional contact information
Adrián Garmendía-Martínez: Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
Francisco M. Muñoz-Pérez: Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
Walter D. Furlan: Departamento de Óptica, Universitat de València, 46100 València, Spain
Fernando Giménez: Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 València, Spain
Juan C. Castro-Palacio: Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
Juan A. Monsoriu: Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
Vicente Ferrando: Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain

Mathematics, 2023, vol. 11, issue 4, 1-9

Abstract: In this work, we present a comparative analysis of different numerical methods to obtain the focusing properties of the zone plates based on Fibonacci and Cantor sequences. The Fresnel approximation was solved numerically in order to obtain the axial irradiance provided by these diffractive lenses. Two different methods were applied. The first one is based on numerical integration, specifically the Simpson integration method and the two-dimensional Gaussian quadrature. The second consisted in the implementation of the Fast Fourier Transform in both one and two dimensions. The axial irradiance of the lenses, the relative error with respect to the analytical solution, and the calculation time required by each method are analyzed and compared. From this analysis it was concluded that the Gauss method presents the best balance between accuracy and computation time. This analysis could be useful to decide the most convenient numerical method to be used for the study of more complex diffractive structures.

Keywords: numerical integration methods; fast fourier transform; fresnel integral; diffractive lenses (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/4/946/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/4/946/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:4:p:946-:d:1066624

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:946-:d:1066624