EconPapers    
Economics at your fingertips  
 

Autocorrelation and Parameter Estimation in a Bayesian Change Point Model

Rui Qiang and Eric Ruggieri ()
Additional contact information
Rui Qiang: Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
Eric Ruggieri: Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USA

Mathematics, 2023, vol. 11, issue 5, 1-22

Abstract: A piecewise function can sometimes provide the best fit to a time series. The breaks in this function are called change points, which represent the point at which the statistical properties of the model change. Often, the exact placement of the change points is unknown, so an efficient algorithm is required to combat the combinatorial explosion in the number of potential solutions to the multiple change point problem. Bayesian solutions to the multiple change point problem can provide uncertainty estimates on both the number and location of change points in a dataset, but there has not yet been a systematic study to determine how the choice of hyperparameters or the presence of autocorrelation affects the inference made by the model. Here, we propose Bayesian model averaging as a way to address the uncertainty in the choice of hyperparameters and show how this approach highlights the most probable solution to the problem. Autocorrelation is addressed through a pre-whitening technique, which is shown to eliminate spurious change points that emerge due to a red noise process. However, pre-whitening a dataset tends to make true change points harder to detect. After an extensive simulation study, the model is applied to two climate applications: the Pacific Decadal Oscillation and a global surface temperature anomalies dataset.

Keywords: change point analysis; prior distribution; model averaging; autocorrelation; PDO; temperature anomalies (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/5/1082/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/5/1082/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:5:p:1082-:d:1076146

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1082-:d:1076146