EconPapers    
Economics at your fingertips  
 

Association Testing of a Group of Genetic Markers Based on Next-Generation Sequencing Data and Continuous Response Using a Linear Model Framework

Zheng Xu ()
Additional contact information
Zheng Xu: Department of Mathematics and Statistics, Wright State University, Dayton, OH 45324, USA

Mathematics, 2023, vol. 11, issue 6, 1-32

Abstract: Association testing has been widely used to study the relationship between phenotypes and genetic variants. Most testing methods are based on genotypes. To avoid genotype calling and directly test on next-generation sequencing (NGS) data, sequencing data-based methods have been proposed and shown advantages over genotype-based testing methods in scenarios where genotype calling is inaccurate. Most sequencing data-based testing methods are based on a single genetic marker. The objective of this paper is to extend the methods to allow testing for the association of a continuous response variable with a group of common variants or a group of rare variants without genotype calling. Our proposed methods are derived based on a standard linear model framework. We derive the joint significant test (JS) for a group of common genetic variables and the variable collapse test (VC) for a group of rare genetic variables. We have conducted extensive simulation studies to evaluate the performance of different estimators. According to our results, we found (1) all methods, including our proposed NGS data-based methods and genotype-based methods, can control the Type I error rate probability well; (2) our proposed NGS data-based methods can achieve better performance in terms of statistical power compared with their corresponding genotype-based methods in the literature; (3) when sequencing depth increases, the performance of all methods increases, and the difference between the performance of NGS data-based methods and corresponding genotype-based methods decreases. In conclusion, we have proposed NGS data-based methods that allow testing for the significance of a group of variants using a linear model framework and have shown the advantage of our NGS data-based methods over genotype-based methods in the literature.

Keywords: association study; genotype calling; next-generation sequencing; group testing; rare variant; score test; joint significance test; variable collapse test (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/6/1285/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/6/1285/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:6:p:1285-:d:1090387

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1285-:d:1090387