EconPapers    
Economics at your fingertips  
 

Qualitative Numerical Analysis of a Free-Boundary Diffusive Logistic Model

María Consuelo Casabán, Rafael Company (), Vera N. Egorova and Lucas Jódar
Additional contact information
María Consuelo Casabán: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Rafael Company: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Vera N. Egorova: Depto de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avda. de los Castros, s/n, 39005 Santander, Spain
Lucas Jódar: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

Mathematics, 2023, vol. 11, issue 6, 1-19

Abstract: A two-dimensional free-boundary diffusive logistic model with radial symmetry is considered. This model is used in various fields to describe the dynamics of spreading in different media: fire propagation, spreading of population or biological invasions. Due to the radial symmetry, the free boundary can be treated by a front-fixing approach resulting in a fixed-domain non-linear problem, which is solved by an explicit finite difference method. Qualitative numerical analysis establishes the stability, positivity and monotonicity conditions. Special attention is paid to the spreading–vanishing dichotomy and a numerical algorithm for the spreading–vanishing boundary is proposed. Theoretical statements are illustrated by numerical tests.

Keywords: free-boundary problem; diffusive logistic model; radial symmetry; spreading–vanishing dichotomy; numerical analysis; finite-difference method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/6/1296/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/6/1296/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:6:p:1296-:d:1090891

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1296-:d:1090891