Qualitative Numerical Analysis of a Free-Boundary Diffusive Logistic Model
María Consuelo Casabán,
Rafael Company (),
Vera N. Egorova and
Lucas Jódar
Additional contact information
María Consuelo Casabán: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Rafael Company: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Vera N. Egorova: Depto de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avda. de los Castros, s/n, 39005 Santander, Spain
Lucas Jódar: Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
Mathematics, 2023, vol. 11, issue 6, 1-19
Abstract:
A two-dimensional free-boundary diffusive logistic model with radial symmetry is considered. This model is used in various fields to describe the dynamics of spreading in different media: fire propagation, spreading of population or biological invasions. Due to the radial symmetry, the free boundary can be treated by a front-fixing approach resulting in a fixed-domain non-linear problem, which is solved by an explicit finite difference method. Qualitative numerical analysis establishes the stability, positivity and monotonicity conditions. Special attention is paid to the spreading–vanishing dichotomy and a numerical algorithm for the spreading–vanishing boundary is proposed. Theoretical statements are illustrated by numerical tests.
Keywords: free-boundary problem; diffusive logistic model; radial symmetry; spreading–vanishing dichotomy; numerical analysis; finite-difference method (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/6/1296/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/6/1296/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:6:p:1296-:d:1090891
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().