EconPapers    
Economics at your fingertips  
 

A Sliding Mode Control Algorithm with Elementary Compensation for Input Matrix Uncertainty in Affine Systems

Ruizhi Sha and Zuren Feng ()
Additional contact information
Ruizhi Sha: State Key Laboratory for Manufacturing System Engineering, Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China
Zuren Feng: State Key Laboratory for Manufacturing System Engineering, Systems Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China

Mathematics, 2023, vol. 11, issue 6, 1-23

Abstract: This paper aims to develop a sliding mode control (SMC) approach with elementary compensation for input matrix uncertainty in affine systems. As a multiplicative uncertainty regarding the control inputs, input matrix uncertainty adversely modifies the control effort and even further causes the instability of systems. To solve this issue, a sliding mode control algorithm is developed based on a two-step design strategy. The first step is to design a general sliding mode controller for the system without input matrix uncertainty. In the second step, a control term is specially designed to compensate for input matrix uncertainty. In order to realize the elementary compensation for input matrix uncertainty, this term is obtained by solving a nonlinear vector equation which is derived from the Lyapunov function inequality. Theorems and lemmas based on the convex cone theory are proposed to guarantee the existence and uniqueness of the solution to the vector equation. Additionally, an algorithmic process is proposed to solve the vector equation efficiently. In the simulation part, the proposed controller is applied to two systems with different structures and compared with two state-of-the-art SMC algorithms. The comprehensive simulation results demonstrate that the proposed method is able to provide the closed-loop system with a competitive performance in terms of convergence level, overshoot reduction and chattering suppression.

Keywords: sliding mode control; input matrix uncertainty; affine systems; elementary compensation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/6/1337/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/6/1337/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:6:p:1337-:d:1092767

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1337-:d:1092767