Heart Failure Detection Using Instance Quantum Circuit Approach and Traditional Predictive Analysis
Shtwai Alsubai (),
Abdullah Alqahtani,
Adel Binbusayyis,
Mohemmed Sha,
Abdu Gumaei and
Shuihua Wang
Additional contact information
Shtwai Alsubai: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Abdullah Alqahtani: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Adel Binbusayyis: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Mohemmed Sha: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Abdu Gumaei: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Shuihua Wang: Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
Mathematics, 2023, vol. 11, issue 6, 1-27
Abstract:
The earlier prediction of heart diseases and appropriate treatment are important for preventing cardiac failure complications and reducing the mortality rate. The traditional prediction and classification approaches have resulted in a minimum rate of prediction accuracy and hence to overcome the pitfalls in existing systems, the present research is aimed to perform the prediction of heart diseases with quantum learning. When quantum learning is employed in ML (Machine Learning) and DL (Deep Learning) algorithms, complex data can be performed efficiently with less time and a higher accuracy rate. Moreover, the proposed ML and DL algorithms possess the ability to adapt to predictions with alterations in the dataset integrated with quantum computing that provides robustness in the earlier detection of chronic diseases. The Cleveland heart disease dataset is being pre-processed for the checking of missing values to avoid incorrect predictions and also for improvising the rate of accuracy. Further, SVM (Support Vector Machine), DT (Decision Tree) and RF (Random Forest) are used to perform classification. Finally, disease prediction is performed with the proposed instance-based quantum ML and DL method in which the number of qubits is computed with respect to features and optimized with instance-based learning. Additionally, a comparative assessment is provided for quantifying the differences between the standard classification algorithms with quantum-based learning in order to determine the significance of quantum-based detection in heart failure. From the results, the accuracy of the proposed system using instance-based quantum DL and instance-based quantum ML is found to be 98% and 83.6% respectively.
Keywords: machine learning; deep learning; quantum computation; qubit; support vector machine; decision tree and random forest (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/11/6/1467/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/6/1467/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:6:p:1467-:d:1100247
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().