EconPapers    
Economics at your fingertips  
 

Fixed Point Results via G -Transitive Binary Relation and Fuzzy L - R -Contraction

Abdelhamid Moussaoui (), Vesna Todorčević, Mirjana Pantović, Stojan Radenović and Said Melliani
Additional contact information
Abdelhamid Moussaoui: Laboratory of Applied Mathematics & Scientific Computing LMACS, Faculty of Sciences and Technics, Sultan Moulay Slimane University, P.O. Box 523, Beni Mellal 23000, Morocco
Vesna Todorčević: Department of Mathematics, Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade, Serbia
Mirjana Pantović: Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
Stojan Radenović: Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia
Said Melliani: Laboratory of Applied Mathematics & Scientific Computing LMACS, Faculty of Sciences and Technics, Sultan Moulay Slimane University, P.O. Box 523, Beni Mellal 23000, Morocco

Mathematics, 2023, vol. 11, issue 8, 1-10

Abstract: In this study, we initiate the concept of fuzzy L - R -contraction and establish some fixed point results involving a G -transitive binary relation and fuzzy L -simulation functions, by employing suitable hypotheses on a fuzzy metric space endowed with a binary relation. The presented results unify, generalize, and improve various previous findings in the literature.

Keywords: fuzzy metric spaces; fixed point; fuzzy contraction; simulation functions; binary relation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/8/1768/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/8/1768/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:8:p:1768-:d:1118267

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1768-:d:1118267