EconPapers    
Economics at your fingertips  
 

Non-Associative Structures and Their Applications in Differential Equations

Yakov Krasnov ()
Additional contact information
Yakov Krasnov: Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel

Mathematics, 2023, vol. 11, issue 8, 1-12

Abstract: This article establishes a connection between nonlinear DEs and linear PDEs on the one hand, and non-associative algebra structures on the other. Such a connection simplifies the formulation of many results of DEs and the methods of their solution. The main link between these theories is the nonlinear spectral theory developed for algebra and homogeneous differential equations. A nonlinear spectral method is used to prove the existence of an algebraic first integral, interpretations of various phase zones, and the separatrices construction for ODEs. In algebra, the same methods exploit subalgebra construction and explain fusion rules. In conclusion, perturbation methods may also be interpreted for near-Jordan algebra construction.

Keywords: non-associative algebra; differential equations in algebra; Peirce decomposition; Kovalevskaya exponent (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/8/1790/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/8/1790/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:8:p:1790-:d:1119231

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1790-:d:1119231