EconPapers    
Economics at your fingertips  
 

Fatigue Characteristics of Long-Span Bridge-Double Block Ballastless Track System

Bin Yan, Jianghao Tian, Jie Huang () and Ping Lou
Additional contact information
Bin Yan: School of Civil Engineering, Central South University, Changsha 410075, China
Jianghao Tian: School of Civil Engineering, Central South University, Changsha 410075, China
Jie Huang: CSCEC AECOM Consultants Co., Ltd., Lanzhou 730000, China
Ping Lou: School of Civil Engineering, Central South University, Changsha 410075, China

Mathematics, 2023, vol. 11, issue 8, 1-22

Abstract: The key issues in designing ballastless track for high-speed railway bridges are to reduce maintenance and improve track smoothness by understanding fatigue damage characteristics. This paper is based on the principle of bridge-rail interaction and train-track-bridge coupling dynamics, the refined simulation model of bridge-CRTS I Bi-block ballastless track system is established by using the finite element method. The longitudinal force distribution law of CWR (Continuously Welded Rail) and the dynamic response characteristics of coupling systems are studied, based on the Miner rule and S-N curve. The fatigue characteristics of ballastless track system laying on long-span bridge under the dynamic train load and the effect of ballastless track system design parameters changes on fatigue characteristics are discussed. The results show that the extreme values of longitudinal force of CWR all appear in the middle of the bridge span or near the bridge bearing, and attention should be paid to the strength checking of CRW laying on long-span bridge. Under the dynamic train load, the fatigue life curve of rail on the bridge is relatively smooth and the minimum life of rail which is laying on continuous bridge decreases from 27.1 years to 17 years that which is laying on cable-stayed bridge. The life curve of track plate laying on continuous bridge is relatively smooth, and the life curve of track plate laying on cable-stayed bridge is related to the stiffness of elastic cushion, which decreases in a stepped manner, and there will be no fatigue failure on the track plate during service. The life curve of the baseplate is related to the type of bridge, the minimum life value of the baseplate appears near the bridge bearing, and there will be no fatigue failure on the baseplate during service. Increasing the stiffness of elastic cushion can effectively improve the fatigue life of track plate, and increasing the vertical stiffness of fasteners can enhance the connection between rail and track plate and improve the fatigue life of rail. The increase in train speed will increase the dynamic stress amplitude of track structure and reduce the fatigue life of the rail.

Keywords: track engineering; ballastless track; continuous bridge; long-span cable-stayed bridge; S-N curves; fatigue characteristic (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/8/1792/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/8/1792/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:8:p:1792-:d:1119312

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1792-:d:1119312