EconPapers    
Economics at your fingertips  
 

Preparation and Analysis of Experimental Findings on the Thermal and Mechanical Characteristics of Pulsating Gas Flows in the Intake System of a Piston Engine for Modelling and Machine Learning

Leonid Plotnikov ()
Additional contact information
Leonid Plotnikov: Turbines and Engines Department, Ural Federal University named after the first President of Russia B.N. Yeltsin, Str. Mira, 19, 620002 Yekaterinburg, Russia

Mathematics, 2023, vol. 11, issue 8, 1-16

Abstract: Today, reciprocating internal combustion engines are used in many branches of the economy (power engineering, machine engineering, transportation, and others). In order for piston engines to meet stringent environmental and economic regulations, it is necessary to develop complex and accurate control systems for the physical processes in engine elements based on digital twins, machine learning, and artificial intelligence algorithms. This article is aimed at preparing and analysing experimental data on the gas dynamics and heat transfer of pulsating air flows in a piston engine’s intake system for modelling and machine learning. The key studies were carried out on a full-scale model of a single-cylinder piston engine under dynamic conditions. Some experimental findings on the gas-dynamic and heat-exchange characteristics of the flows were obtained with the thermal anemometry method and a corresponding measuring system. The effects of the inlet channel diameter on the air flow, the intensity of turbulence, and the heat transfer coefficient of pulsating air flows in a piston engine’s inlet system are shown. A mathematical description of the dependences of the turbulence intensity, heat transfer coefficient, and Nusselt number on operation factors (crankshaft speed, air flow velocity, Reynolds number) and the inlet channel’s geometric dimensions are proposed. Based on the mathematical modelling of the thermodynamic cycle, the operational and environmental performance of a piston engine with intake systems containing channels with different diameters were assessed. The presented data could be useful for refining engineering calculations and mathematical models, as well as for developing digital twins and engine control systems.

Keywords: reciprocating engine; intake process; channel diameter; unsteady aerodynamics; gas flow; heat transfer; mathematical analysis; reciprocating engine performance (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2227-7390/11/8/1967/pdf (application/pdf)
https://www.mdpi.com/2227-7390/11/8/1967/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:11:y:2023:i:8:p:1967-:d:1129453

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1967-:d:1129453