EconPapers    
Economics at your fingertips  
 

An Extension of the Akash Distribution: Properties, Inference and Application

Yolanda M. Gómez, Luis Firinguetti-Limone (), Diego I. Gallardo and Héctor W. Gómez
Additional contact information
Yolanda M. Gómez: Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
Luis Firinguetti-Limone: Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
Diego I. Gallardo: Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile
Héctor W. Gómez: Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile

Mathematics, 2023, vol. 12, issue 1, 1-15

Abstract: In this article we introduce an extension of the Akash distribution. We use the slash methodology to make the kurtosis of the Akash distribution more flexible. We study the general probability density function of this new model, some properties, moments, skewness and kurtosis coefficients. Statistical inference is performed using the methods of moments and maximum likelihood via the EM algorithm. A simulation study is carried out to observe the behavior of the maximum likelihood estimator. An application to a real data set with high kurtosis is considered, where it is shown that the new distribution fits better than other extensions of the Akash distribution.

Keywords: Akash distribution; kurtosis; maximum likelihood estimation; slash distribution (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/1/31/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/1/31/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2023:i:1:p:31-:d:1305312

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:31-:d:1305312