MSGC-YOLO: An Improved Lightweight Traffic Sign Detection Model under Snow Conditions
Baoxiang Chen and
Xinwei Fan ()
Additional contact information
Baoxiang Chen: College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou 310018, China
Xinwei Fan: College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou 310018, China
Mathematics, 2024, vol. 12, issue 10, 1-18
Abstract:
Traffic sign recognition plays a crucial role in enhancing the safety and efficiency of traffic systems. However, in snowy conditions, traffic signs are often obscured by particles, leading to a severe decrease in detection accuracy. To address this challenge, we propose an improved YOLOv8-based model for traffic sign recognition. Initially, we introduce a Multi-Scale Group Convolution (MSGC) module to replace the C2f module in the YOLOv8 backbone. Data indicate that MSGC enhances detection accuracy while maintaining model lightweightness. Subsequently, to improve the recognition ability for small targets, we introduce an enhanced small target detection layer, which enhances small target detection accuracy while reducing parameters. In addition, we replaced the original BCE loss with the improved EfficientSlide loss to improve the sample imbalance problem. Finally, we integrate Deformable Attention into the model to improve the detection efficiency and performance of complex targets. The resulting fused model, named MSGC-YOLOv8, is evaluated on an enhanced dataset of snow-covered traffic signs. Experimental results show that the MSGC-YOLOv8 model is used for snow road traffic sign recognition. Compared with the YOLOv8n model mAP@0.5:0.95, mAP@0.5:0.95 is increased by 17.7% and 18.1%, respectively, greatly improving the detection accuracy. Compared with the YOLOv8s model, while the parameters are reduced by 59.6%, mAP@0.5 only loses 1.5%. Considering all aspects of the data, our proposed model shows high detection efficiency and accuracy under snowy conditions.
Keywords: YOLOv8; traffic sign detection; small target detection; group convolution; data augmentation (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/10/1539/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/10/1539/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:10:p:1539-:d:1395106
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().