Ensemble Machine Learning Approach for Parkinson’s Disease Detection Using Speech Signals
Syed Nisar Hussain Bukhari () and
Kingsley A. Ogudo
Additional contact information
Syed Nisar Hussain Bukhari: National Institute of Electronics and Information Technology (NIELIT), Srinagar 191132, India
Kingsley A. Ogudo: Department of Electrical & Electronics Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg 0524, South Africa
Mathematics, 2024, vol. 12, issue 10, 1-18
Abstract:
The detection of Parkinson’s disease (PD) is vital as it affects the population worldwide and decreases the quality of life. The disability and death rate due to PD is increasing at an unprecedented rate, more than any other neurological disorder. To this date, no diagnostic procedures exist for this disease. However, several computational approaches have proven successful in detecting PD at early stages, overcoming the disadvantages of traditional methods of diagnosis. In this study, a machine learning (ML) detection system based on the voice signals of PD patients is proposed. The AdaBoost classifier has been utilized to construct the model and trained on a dataset obtained from the machine learning repository of the University of California, Irvine (UCI). This dataset includes voice attributes such as time-frequency features, Mel frequency cepstral coefficients, wavelet transform features, vocal fold features, and tremor waveform quality time. The model demonstrated promising performance, achieving high accuracy, precision, recall, F1 score, and AUC score of 0.96, 0.98, 0.93, 0.95, and 0.99, respectively. Furthermore, the robustness of the proposed model is rigorously assessed through cross-validation, revealing consistent performance across all iterations. The overarching objective of this study is to contribute to the scientific community by furnishing a robust system for the detection of PD.
Keywords: machine learning; Parkinson’s disease; speech signals; boosting; ensemble learning (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/10/1575/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/10/1575/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:10:p:1575-:d:1397169
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().