EconPapers    
Economics at your fingertips  
 

Utilizing Artificial Neural Networks for Geometric Bone Model Reconstruction in Mandibular Prognathism Patients

Jelena Mitić (), Nikola Vitković, Miroslav Trajanović, Filip Górski, Ancuţa Păcurar, Cristina Borzan, Emilia Sabău and Răzvan Păcurar ()
Additional contact information
Jelena Mitić: Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
Nikola Vitković: Faculty of Mechanical Engineering, University of Nis, Aleksandra Medvedeva, 18000 Nis, Serbia
Miroslav Trajanović: Faculty of Mechanical Engineering, University of Nis, Aleksandra Medvedeva, 18000 Nis, Serbia
Filip Górski: Faculty of Mechanical Engineering, Poznań University of Technology, Piotrowo 3 STR, 61-138 Poznań, Poland
Ancuţa Păcurar: Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
Cristina Borzan: Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
Emilia Sabău: Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
Răzvan Păcurar: Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania

Mathematics, 2024, vol. 12, issue 10, 1-13

Abstract: Patient-specific 3D models of the human mandible are finding increasing utility in medical fields such as oral and maxillofacial surgery, orthodontics, dentistry, and forensic sciences. The efficient creation of personalized 3D bone models poses a key challenge in these applications. Existing solutions often rely on 3D statistical models of human bone, offering advantages in rapid bone geometry adaptation and flexibility by capturing a range of anatomical variations, but also a disadvantage in terms of reduced precision in representing specific shapes. Considering this, the proposed parametric model allows for precise manipulation using morphometric parameters acquired from medical images. This paper highlights the significance of employing the parametric model in the creation of a personalized bone model, exemplified through a case study targeting mandibular prognathism reconstruction. A personalized model is described as 3D point cloud determined through the utilization of series of parametric functions, determined by the application of geometrical morphometrics, morphology properties, and artificial neural networks in the input dataset of human mandible samples. With 95.05% of the personalized model’s surface area displaying deviations within −1.00–1.00 mm relative to the input polygonal model, and a maximum deviation of 2.52 mm, this research accentuates the benefits of the parametric approach, particularly in the preoperative planning of mandibular deformity surgeries.

Keywords: human mandible; parametric model; artificial neural network; reconstruction; mandibular prognathism (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/10/1577/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/10/1577/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:10:p:1577-:d:1397210

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1577-:d:1397210