EconPapers    
Economics at your fingertips  
 

A Classification of Compact Cohomogeneity One Locally Conformal Kähler Manifolds

Daniel Guan ()
Additional contact information
Daniel Guan: Department of Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng 475004, China

Mathematics, 2024, vol. 12, issue 11, 1-12

Abstract: In this paper, we apply a result of the classification of a compact cohomogeneity one Riemannian manifold with a compact Lie group G to obtain a classification of compact cohomogeneity one locally conformal Kähler manifolds. In particular, we prove that the compact complex manifold is a complex one-dimensional torus bundle over a projective rational homogeneous, or cohomogeneity one manifold except of a class of manifolds with a generalized Hopf surface bundle over a projective rational homogeneous space. Additionally, it is a homogeneous compact complex manifold under the complexification G C of the given compact Lie group G under an extra condition that the related closed one form is cohomologous to zero on the generic G orbit. Moreover, the semi-simple part S of the Lie group action has hypersurface orbits, i.e., it is of cohomogeneity one with respect to the semi-simple Lie group S in that special case.

Keywords: cohomology; invariant structure; homogeneous space; cohomogeneity one; complex torus bundles; Hermitian manifolds; reductive Lie group; compact manifolds; locally conformal Kähler manifolds (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/11/1710/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/11/1710/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:11:p:1710-:d:1405791

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1710-:d:1405791