Reinforcing Network Security: Network Attack Detection Using Random Grove Blend in Weighted MLP Layers
Adel Binbusayyis ()
Additional contact information
Adel Binbusayyis: Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Mathematics, 2024, vol. 12, issue 11, 1-25
Abstract:
In the modern world, the evolution of the internet supports the automation of several tasks, such as communication, education, sports, etc. Conversely, it is prone to several types of attacks that disturb data transfer in the network. Efficient attack detection is needed to avoid the consequences of an attack. Traditionally, manual attack detection is limited by human error, less efficiency, and a time-consuming mechanism. To address the problem, a large number of existing methods focus on several techniques for better efficacy in attack detection. However, improvement is needed in significant factors such as accuracy, handling larger data, over-fitting versus fitting, etc. To tackle this issue, the proposed system utilized a Random Grove Blend in Weighted MLP (Multi-Layer Perceptron) Layers to classify network attacks. The MLP is used for its advantages in solving complex non-linear problems, larger datasets, and high accuracy. Conversely, it is limited by computation and requirements for a great deal of labeled training data. To resolve the issue, a random info grove blend and weight weave layer are incorporated into the MLP mechanism. To attain this, the UNSW–NB15 dataset, which comprises nine types of network attack, is utilized to detect attacks. Moreover, the Scapy tool (2.4.3) is utilized to generate a real-time dataset for classifying types of attack. The efficiency of the presented mechanism is calculated with performance metrics. Furthermore, internal and external comparisons are processed in the respective research to reveal the system’s better efficiency. The proposed model utilizing the advantages of Random Grove Blend in Weighted MLP attained an accuracy of 98%. Correspondingly, the presented system is intended to contribute to the research associated with enhancing network security.
Keywords: intrusion detection; UNSW–NB15; cyber-attack; machine learning; deep learning; multilayer perceptron; Scapy tool (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2227-7390/12/11/1720/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/11/1720/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:11:p:1720-:d:1406547
Access Statistics for this article
Mathematics is currently edited by Ms. Emma He
More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().