EconPapers    
Economics at your fingertips  
 

Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs

Gerardo Armando Hernández Castorena, Gerardo Maximiliano Méndez (), Ismael López-Juárez, María Aracelia Alcorta García, Dulce Citlalli Martinez-Peon and Pascual Noradino Montes-Dorantes ()
Additional contact information
Gerardo Armando Hernández Castorena: Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, NL, Mexico
Gerardo Maximiliano Méndez: Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Nuevo León, TecNM, Av. Eloy Cavazos 2001, Cd. Guadalupe CP 67170, NL, Mexico
Ismael López-Juárez: Robotics and Advanced Manufacturing Department, CINVESTAV, Ramos Arizpe 25900, CH, Mexico
María Aracelia Alcorta García: Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, NL, Mexico
Dulce Citlalli Martinez-Peon: Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Nuevo León, TecNM, Av. Eloy Cavazos 2001, Cd. Guadalupe CP 67170, NL, Mexico
Pascual Noradino Montes-Dorantes: Departamento de Ciencias Económico-Administrativas, Departamento de Educación a Distancia, Instituto Tecnológico de Saltillo, TecNM, Blvd. Venustiano Carranza, Priv. Tecnológico 2400, Saltillo CP 25280, CH, Mexico

Mathematics, 2024, vol. 12, issue 13, 1-39

Abstract: This paper presents the novel enhanced Wagner–Hagras interval type-3 Takagi–Sugeno–Kang fuzzy logic system with type-1 non-singleton inputs (EWH IT3 TSK NSFLS-1) that uses the backpropagation (BP) algorithm to train the antecedent and consequent parameters. The proposed methodology dynamically changes the parameters of only the alpha-0 level, minimizing some criterion functions as the current information becomes available for each alpha-k level. The novel fuzzy system was applied in two industrial processes and several fuzzy models were used to make comparisons. The experiments demonstrated that the proposed fuzzy system has a superior ability to predict the critical variables of the tested processes with lower prediction errors than those produced by the benchmark fuzzy systems.

Keywords: backpropagation algorithm; gradient descent algorithm; GMAW; HSM; interval type-3 fuzzy systems; robotic gas metal arc welding; type-1 non-singleton inputs (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/13/1976/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/13/1976/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:13:p:1976-:d:1422643

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1976-:d:1422643