EconPapers    
Economics at your fingertips  
 

Weighted Ranked Set Sampling for Skewed Distributions

Dinesh S. Bhoj and Girish Chandra ()
Additional contact information
Dinesh S. Bhoj: Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102, USA
Girish Chandra: Department of Statistics, University of Delhi, Delhi 110007, India

Mathematics, 2024, vol. 12, issue 13, 1-11

Abstract: Ranked set sampling (RSS) is a useful technique for improving the estimator of a population mean when the sampling units in a study can be more easily ranked than the actual measurement. RSS performs better than simple random sampling (SRS) when the mean of units corresponding to each rank is used. The performance of RSS can be increased further by assigning weights to the ranked observations. In this paper, we propose weighted RSS procedures to estimate the population mean of positively skewed distributions. It is shown that the gains in the relative precisions of the population mean for chosen distributions are uniformly higher than those based on RSS. The gains in relative precisions are substantially high. Further, the relative precisions of our estimator are slightly higher than the ones based on Neyman’s optimal allocation model for small sample sizes. Moreover, it is shown that the performance of the proposed estimator increases as the skewness increases by using the example of the lognormal family of distributions.

Keywords: ordered observations; Neyman’s allocation; relative precision; skewness; unbiased estimator; weight (search for similar items in EconPapers)
JEL-codes: C (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2227-7390/12/13/2023/pdf (application/pdf)
https://www.mdpi.com/2227-7390/12/13/2023/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jmathe:v:12:y:2024:i:13:p:2023-:d:1425401

Access Statistics for this article

Mathematics is currently edited by Ms. Emma He

More articles in Mathematics from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2023-:d:1425401